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Abstract
Background: Diffusing alpha-emitters Radiation Therapy (“DaRT”) is a promis-
ing new modality for the treatment of solid tumors. Interstitial sources containing
224Ra are inserted into the tumor, producing alpha particles via the decay of
224Ra and its daughters. The alpha particles are able to produce a “kill region”
of several mm due to the diffusion of the alpha-emitting atoms. The Diffusion-
Leakage (D-L) model has been proposed to describe the movement of the
alpha-emitters used in DaRT in tumor tissue.
Purpose: To date, estimating the dose delivered under the D-L model has
been accomplished with numerical solutions based on finite difference meth-
ods, namely DART1D and DART2D, as well as with asymptotic expressions for
the long time limit. The aim of this work is to develop a flexible method of finite
elements for solving the D-L model and to validate prior solutions of the D-L
model.
Methods: We develop a two-dimensional finite element solution to the D-L
model implemented using the FEniCS software library.Our approach solves the
variational formulation of the D-L equations on an unstructured mesh of triangu-
lar Lagrangian elements.We calculate the local dose in the mid- and axial planes
of the source and validate our results against the one- and two-dimensional
solutions obtained using the previously proposed numerical scheme, DART1D
and DART2D. We use our model to estimate the change in dose in the source
midplane as a function of the physical parameters used in the D-L model.
Results: The local dose at the end of a 30 day treatment period estimated by
our numerical method differs from DART1D and DART2D by less than 1% in the
source midplane and less than 3% along the source axis over clinically relevant
distances,with the largest discrepancies in high gradient areas where the Finite
Element Method (FEM) mesh has a higher element density. We find that within
current experimentally estimated ranges for D-L model parameters, the dose in
the source midplane at a distance of 2 mm can vary by over a factor of 3.
Conclusions: The 2D finite element model reproduces the calculated dose
obtained with DART1D and DART2D under the assumptions D-L model. The
variation in predicted dose within current experimental ranges for model param-
eters suggests the necessity of further studies to better determine their
statistical distributions. Finally, the FEM model can be used to calculate dose
from DaRT in a variety of realistic 2D geometries beyond the D-L model.
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2 A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE

1 INTRODUCTION

The efficacy of Diffusing alpha-emitters Radiation Ther-
apy (“DaRT”) in treating bulky tumors has been due to
multiple advantageous properties of alpha particles.1–4

Alpha particles have a high linear energy transfer (LET)
and produce almost equal levels of lethal DNA dam-
age in hypoxic cells as in oxic cells. Furthermore, their
short range allows for the sparing of healthy tissue.
The alpha particle sources in DaRT are thin metallic
cylinders carrying a few 𝜇Ci of 224Ra activity that are
inserted intratumorally.5 The 224Ra decays, releasing
daughter species (220Rn,216Po,212Pb,212Bi,212Po,208Tl,
and 208Pb) from the source surface by recoil. Even after
the daughters have expended their initial kinetic energy,
they continue to move through tissue via diffusive and
convective processes,releasing alpha and beta particles
in subsequent decays.The alpha generating decays are
220Rn to 216Po,216Po to 212Pb,212Bi to 208Tl,and 212Po to
208Pb (Figure 1).The “kill region”surrounding the source
is typically a few mm in radius.1

DaRT has been studied extensively in mice,and more
recently, in clinical trials.A first-in-human study5 of squa-
mous cell carcinomas saw a complete response in 22/28
lesions after 30 days, while 6/28 lesions had a par-
tial response. In one patient, an abscopal effect was
observed. No toxicities above grade 2 were observed,
and 90% of pain and grade 2 skin ulcerations in patients
were resolved within 3 to 5 weeks. Additionally, DaRT
has been shown in preclinical studies to increase tumor
response when combined with chemotherapy7–9 and
immunotherapy.10–13

The “Diffusion-Leakage (D-L) Model” has been pro-
posed as a simple model to describe the dose deposition
in tissue from DaRT.14 Under the D-L model, all parti-
cle motion can be attributed to diffusion, described by
a global diffusion constant that is constant in space
and time and depends on the particle species and sur-
rounding medium. Any convection is assumed to have
a short correlation length so that the motion is effec-
tively diffusive. The removal of 212Pb and 212Bi from
the tumor via blood vessels is assumed to occur at a
constant rate throughout the tumor. It has been shown
previously14 that modeling the motion of 220Rn, 212Pb,
and 212Bi is sufficient to describe the distribution of
224Ra daughters within the tumor. Closed form solu-
tions of the D-L model for limiting cases have been
proposed,14 as well as numerical schemes for solv-
ing the D-L equations in one and two dimensions,15,16

known as DART1D and DART2D, respectively. The
numerical schemes have been used to develop source
placement recommendations for treatment planning.16

We present an alternative approach to numerically
solving the D-L model using finite elements. We refor-
mulate the D-L model as a variational problem, which
we then solve using Galerkin methods on an unstruc-
tured mesh. We independently validate the results of

F IGURE 1 Decay chain of 224Ra. Data taken from NuDat 3
database.6

DART1D and DART2D to within 1% in the source mid-
plane and 3% along the source axis. Our approach
allows for local mesh refinement in high gradient regions
where a higher element density may be advantageous,
as well as easy incorporation of time dependent and
spatially inhomogeneous model parameters, the latter
of which will be the subject of future work. The ability
to model nonuniform tissue geometries is necessary for
dose calculations in more realistic scenarios.14

2 METHODS

2.1 The D-L model

The migration of the 224Ra daughters can be described
by a set of coupled diffusion-advection equations. We
simulate the dose delivered by a single DaRT source
according to the (D-L) model.14 The D-L model has the
following assumptions:

1. The movement of atoms is dominated by diffusion.
The contribution of advective terms is minimal.

2. The tissue surrounding the source is constant in
space and time so that the diffusion-related model
parameters are constant as well.

3. It is sufficient to model the diffusion of 220Ra, 212Pb,
and 212Bi. Their respective daughter species are
assumed to be in local secular equilibrium with the
parent.

4. The migration of 212Pb can be described by a sin-
gle diffusion coefficient averaged over all molecular
species.
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A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE 3

5. The clearance of 212Pb atoms from the tumor via
blood vessels can be described by a constant finite
clearance rate.

6. 212Bi is similarly cleared from the tumor, but this is a
second order effect.

7. 220Rn fully decays inside the tumor without being
cleared.

Under the above assumptions, the number densities of
220Rn, 212Pb, and 212Bi at point r ≡ (x, y, z) and time t
in a volume of interest can be calculated using the D-L
model equations:

𝜕nRn

𝜕t
= DRn∇

2nRn − 𝜆RnnRn (1)

𝜕nPb

𝜕t
= DPb∇

2nPb + 𝜆RnnRn − 𝜆PbnPb − 𝛼PbnPb (2)

𝜕nBi

𝜕t
= DBi∇

2nBi + 𝜆PbnPb − 𝜆BinBi − 𝛼BinBi (3)

where nRn, nPb, nBi are the number densities, DRn, DPb,
DBi are the diffusion coefficients,and 𝜆Rn,𝜆Pb,𝜆Bi are the
decay rates of 220Rn, 212Pb, and 212Bi, respectively, and
𝛼Pb and 𝛼Bi are the clearance rates of 212Pb, and 212Bi,
respectively. The terms in Equations 2 and 3 involv-
ing the number densities of the parent particle provide
the source component due to the decay of the par-
ent. For 220Rn and 212Pb, there is an additional source
due to direct desorption from the surface of the source.
This influx of particles can be described as a Neumann
boundary condition at the source wall. No particles are
released at the top and bottom surfaces of the source.

We consider a cylindrical source of radius R0 and
length l situated at the origin and lying along the z-
axis. We have the following boundary condition at r =√

x2 + y2 = R0
15:

𝜕nRn

𝜕n
= Pdes(Rn)

Γsrc
Ra(0)

2𝜋R0lDRn
e−𝜆Rat (4)

𝜕nPb

𝜕n
= (Pdes(Pb) − Pdes(Rn))

Γsrc
Ra(0)

2𝜋R0lDPb
e−𝜆Rat (5)

𝜕nBi

𝜕n
= 0, (6)

where 𝜆Ra is the decay rate of 224Ra and Γsrc
Ra(0) is the

initial activity on the source. The desorption probabili-
ties of 220Rn and 212Pb, Pdes(Rn) and Pdes(Pb), give the
respective probabilities of a 220Rn or 212Pb atom being
emitted from the source following a decay of 224Ra. The
derivative in the outward normal direction to the bound-
ary, 𝜕nk

𝜕n
, can be related to the radial component of the

diffusion current, jk , by jk = Dk
𝜕nk

𝜕n
, where k is 220Rn,

212Pb, or 212Bi. Far away from the source (r →∞), we

impose the Dirichlet boundary conditions

nk = 0 (7)

for k = 220Rn, 212Pb, and 212Bi.
Following Heger et al.,15 we define the diffusion

lengths

LRn =

√
DRn

𝜆Rn − 𝜆Ra
(8)

LPb =

√
DPb

𝜆Pb + 𝛼Pb − 𝜆Ra
(9)

LBi =

√
DBi

𝜆Bi + 𝛼Bi − 𝜆Bi
, (10)

which combine the diffusion coefficients, decay rates,
and clearance rates into a single parameter which
describes the spatial spread of 220Rn, 212Pb, and
212Bi, respectively.

Once the number densities nRn, nPb, and nBi are
known, the local component of the dose due to alpha
decay of 220Rn and 216Po and of 212Bi and 212Po can
be calculated by

Dose𝛼(RnPo; r, z, t) =
E𝛼(RnPo)

𝜌 ∫
t

0
𝜆RnnRn(r, z, t′)dt′

(11)

Dose𝛼(BiPo; r, z, t) =
E𝛼(BiPo)

𝜌 ∫
t

0
𝜆BinBi(r, z, t′)dt′

(12)

where E𝛼(RnPo) is the total alpha particle energy of
220Rn and 216Po, E𝛼(BiPo) is the weighted-average
alpha particle energy of 212Bi and 212Po, and 𝜌 is the
tissue density. Equations 11–12 assume that because
the range of the alpha particles is much smaller than
the diffusion lengths, the energy of the alpha particles is
deposited in the immediate vicinity of the decay.14

2.2 Finite element formulation

The use of finite element methods (FEMs) to solve
systems of partial differential equations with physical
origins is well-documented.17,18 We present here a brief
sketch of the principles of FEM as relevant to the current
work.We solve Equations 1–3 in two domain geometries.
First, we consider the midplane (z = 0 mm) geometry,
analogous to one-dimensional finite difference scheme
proposed in Heger et al.15 Next, we show preliminary
dose calculations in the axial plane (x = 0 mm), analo-
gous to the previously proposed two-dimentional finite
difference scheme.15
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4 A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE

2.2.1 Dose profile in source midplane

We solve the D-L equations in two dimensions over a
14 mm-by-14 mm domain in the midplane of the source
(z = 0 mm). We exclude the circular source area and
consider the source surface as a boundary. We define
the following notation for the domain and boundaries:

Ω: solution domain (13)

𝜕Ωsource: source surface (14)

𝜕Ωedge: outside boundary (15)

Equations 1–3 are the strong form expression of our dif-
fusion process and can be written as an operator on the
solution vector n = (nRn, nPb, nBi).

F(n(r)) = 0 ∀r ∈ Ω. (16)

We relax our requirements for the approximate solution
n(r) so that it no longer needs to satisfy Equation 16,but
instead satisfies the variational form19

‚F(n, v) = ∫
Ω

F(n) ⋅ vdA = 0 ∀v ∈ ‚V, (17)

where v = (vRn, vPb, vBi) is a vector of test functions,
and ‚V = V̂ × V̂ × V̂ , where V̂ is a suitable subspace of
the space of continuous functions.18 We require that v
vanishes on Ωedge, making the solution is exact on the
boundaries. We further replace the time derivative with
a backward Euler discretization.17 At time step p,

∫
Ω

(
np

Rn − np−1
Rn

Δt
− DRn∇

2np
Rn + 𝜆Rnnp

Rn

)
vRndA

+∫
Ω

(
np

Pb − np−1
Pb

Δt
− DPb∇

2np
Pb − 𝜆Rnnp

Rn

+𝜆Pbnp
Pb + 𝛼Pbnp

Pb

)
vPbdA + ∫

Ω

(
np

Bi − np−1
Bi

Δt

−DBi∇
2np

Bi − 𝜆Pbnp
Pb + 𝜆Bin

p
Bi + 𝛼Bin

p
Bi

)
vBidA = 0, (18)

where Δt is the time step size and np is the solution at
the p-th time step.The differential element dA indicates a
two-dimensional volume integral over Ω. Integrating the
terms containing Dk∇

2nk by parts, we obtain

‚F(n, v) = ∫
Ω

(
np

Rn − np−1
Rn

Δt
+ 𝜆Rnnp

Rn

)
vRndA

+∫
Ω

DRn∇np
Rn ⋅ ∇vRndA

+∫
Ω

(
np

Pb − np−1
Pb

Δt
− 𝜆Rnnp

Rn + 𝜆Pbnp
Pb + 𝛼Pbnp

Pb

)

×vPbdA + ∫
Ω

DPb∇np
Pb ⋅ ∇vPbdA

+∫
Ω

(
np

Bi − np−1
Bi

Δt
− 𝜆Pbnp

Pb + 𝜆Bin
p
Bi + 𝛼Bin

p
Bi

)

×vBidA + ∫
Ω

DBi∇np
Bi ⋅ ∇vBidA

−∫
𝜕Ωsource

DRnjRnvRnds − ∫
𝜕Ωsource

DPbjPbvPbds = 0, (19)

where we have used the Neumann boundary condi-
tions 4–6 to substitute for 𝜕nx

𝜕n
in the line integrals

over 𝜕Ωsource. Because v must vanish on the bound-
ary where the exact solution is known, the integrals over
𝜕Ωedge vanish as well. The solution to Equation 19 sub-
ject to the Dirichlet boundary conditions in Equation 7
approximates the solution to Equations 1–3.

By separating terms that depend on np and v from
terms that depend only on v,we may rewrite Equation 19
in the form

a(np, v) = L(v). (20)

where the bilinear form a(n, v) and linear form L(v̂)18 are
given by

a(np, v) = ∫
Ω

(
np

Rn

Δt
+ 𝜆Rnnp

Rn

)
vRndA + ∫

Ω

DRn∇np
Rn ⋅ ∇vRndA

+∫
Ω

(
np

Pb

Δt
− 𝜆Rnnp

Rn + 𝜆Pbnp
Pb + 𝛼Pbnp

Pb

)
vPbdA

+∫
Ω

DPb∇np
Pb ⋅ ∇vPbdA

+∫
Ω

(
np

Bi

Δt
− 𝜆Pbnp

Pb + 𝜆Bin
p
Bi + 𝛼Bin

p
Bi

)
vBidA

+∫
Ω

DBi∇np
Bi ⋅ ∇vBidA (21)

L(v) = ∫
Ω

np−1
Rn

Δt
vRndA + ∫

Ω

np−1
Pb

Δt
vPbdA + ∫

Ω

np−1
Bi

Δt
vBidA

+∫
𝜕Ωsource

DRnjRnvRnds + ∫
𝜕Ωsource

DPbjPbvPbds. (22)

To obtain the space-discretized variational problem,
we divide the domain into triangular elements that com-
prise a mesh. Similarly, we make an ansatz for the
discrete solution at time step p,17

(
np

Rn, np
Pb, np

Bi

)
=

N∑
j

Up
j (𝜙j ,𝜓j ,𝜒j), (23)
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A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE 5

where {(𝜙i ,𝜓i ,𝜒i)}
N
i comprise a set of suitably chosen

basis functions spanning the solution space. In our case,
we restrict our solution space to continuous piecewise
linear functions, and follow the Galerkin method so that
the test function space V̂ has the same set of basis
functions as the corresponding solution space,18 namely,
the 2D linear Lagrange nodal basis. This basis con-
sists of hat functions hi where hi has unit value at the
i-th mesh node and is zero at all other nodes.17 Sub-
stituting equation into Equations 21 and 22 and taking
(vRn, vPb, vBi) = (𝜙i ,𝜓i ,𝜒i) for i = 1,… , N, we obtain for
each time step a linear system of the form

AUp = b (24)

where

Aij = ∫
Ω

(
𝜙j

Δt
+ 𝜆Rn𝜙j

)
𝜙idA + ∫

Ω

DRn∇𝜙j ⋅ ∇𝜙idA

+∫
Ω

(
𝜓j

Δt
− 𝜆Rn𝜙j + 𝜆Pb𝜓j + 𝛼Pb𝜓

p
j

)
𝜓idA

+∫
Ω

DPb∇𝜓j ⋅ ∇𝜓idA

+∫
Ω

(
𝜒j

Δt
− 𝜆Pb𝜓j + 𝜆Bi𝜒j + 𝛼Bi𝜒j

)
𝜒idA

+∫
Ω

DBi∇𝜒j ⋅ ∇𝜒idA (25)

bi = ∫
Ω

np−1
Rn

Δt
𝜙idA + ∫

Ω

np−1
Pb

Δt
𝜓idA + ∫

Ω

np−1
Bi

Δt
𝜒idA

+∫
𝜕Ωsource

DRnjRn𝜙ids + ∫
𝜕Ωsource

DPbjPb𝜓ids. (26)

Equation 24 can be solved for Up using standard lin-
ear solvers. In our case, we use lower-upper (LU)
decomposition17 as implemented in the FEniCS library.

2.2.2 Dose profile in axial plane

In addition to the source midplane, we also solve the D-
L equations in the plane intersecting the source along
its axis. As before, the midpoint of the source is situated
at the origin. Taking advantage of the axial symmetry of
the problem, the domain extends in the radial direction
from r = 0 to r = 7 mm and in the axial direction from
z = −10 to z = 10 mm so that |max(z)| ≫ l∕2, where l is
the source length. In this case, we require that 𝜕nx∕𝜕n =

0 at the top and bottom surfaces of the source and at
r = 0 for |z| > l∕2. To incorporate the radial symmetry
into the FEniCS variational statement,we recast the D-L
equations into cylindrical coordinates:

𝜕nRn

𝜕t
= DRn

[
1
r
𝜕

𝜕r

(
r
𝜕nRn

𝜕r

)
+
𝜕2nRn

𝜕z2

]
− 𝜆RnnRn (27)

𝜕nPb

𝜕t
= DPb

[
1
r
𝜕

𝜕r

(
r
𝜕nPb

𝜕r

)
+
𝜕2nPb

𝜕z2

]
+𝜆RnnRn − (𝜆Pb + 𝛼Pb)nPb (28)

𝜕nBi

𝜕t
= DBi

[
1
r
𝜕

𝜕r

(
r
𝜕nBi

𝜕r

)
+
𝜕2nBi

𝜕z2

]
+𝜆PbnPb − (𝜆Bi + 𝛼Bi)nBi (29)

As in Equation 17, we take the inner product with our
test functions to obtain the variational form, and we use
the cylindrical area element rdrdz in the integration over
Ω. The resulting variational statement is

‚F(n, v) = ∫
Ω

(
np

Rn − np−1
Rn

Δt
+ 𝜆Rnnp

Rn

)
vRnrdA

+∫
Ω

DRn∇np
Rn ⋅ ∇vRnrdA

+∫
Ω

(
np

Pb − np−1
Pb

Δt
− 𝜆Rnnp

Rn + 𝜆Pbnp
Pb + 𝛼Pbnp

Pb

)

×vPbrdA + ∫
Ω

DPb∇np
Pb ⋅ ∇vPbrdA

+∫
Ω

(
np

Bi − np−1
Bi

Δt
− 𝜆Pbnp

Pb + 𝜆Bin
p
Bi + 𝛼Bin

p
Bi

)

×vBirdA + ∫
Ω

DBi∇np
Bi ⋅ ∇vBirdA

−∫
𝜕Ωsource

DRnjRnvRnrds

−∫
𝜕Ωsource

DPbjPbvPbrds = 0, (30)

and the corresponding matrix entries for A and b in
Equation 24 are

Aij = ∫
Ω

(
𝜙j

Δt
+ 𝜆Rn𝜙j

)
𝜙i rdA + ∫

Ω

DRn∇𝜙j ⋅ ∇𝜙i rdA

+∫
Ω

(
𝜓j

Δt
− 𝜆Rn𝜙j + 𝜆Pb𝜓j + 𝛼Pb𝜓

p
j

)
𝜓i rdA

+∫
Ω

DPb∇𝜓j ⋅ ∇𝜓i rdA

+∫
Ω

(
𝜒j

Δt
− 𝜆Pb𝜓j + 𝜆Bi𝜒j + 𝛼Bi𝜒j

)
𝜒i rdA

+∫
Ω

DBi∇𝜒j ⋅ ∇𝜒i rdA (31)
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6 A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE

TABLE 1 Mesh regions and densities for the midplane geometry.

Region Density

d > 1.15 mm 145 elements/mm2

0.15 mm < d ≤ 1.15 mm 600 elements/mm2

0.025 mm < d ≤ 0.15 mm 1200 elements/mm2

d ≤ 0.025 mm 19 200 elements/mm2

Note: Mesh regions and densities for the midplane geometry.

TABLE 2 Mesh regions and densities for the axial geometry.

Region Density

d > 0.25 mm 3300 elements/mm2

0.01 mm < d ≤ 0.25 mm 14 300 elements/mm2

d ≤ 0.01 mm 69 000 elements/mm2

Note: Mesh regions and densities for the axial geometry.

bi = ∫
Ω

np−1
Rn

Δt
𝜙i rdA + ∫

Ω

np−1
Pb

Δt
𝜓i rdA + ∫

Ω

np−1
Bi

Δt
𝜒i rdA

+∫
𝜕Ωsource

DRnjRn𝜙i rds + ∫
𝜕Ωsource

DPbjPb𝜓i rds. (32)

Here we follow the FEniCS convention where ∇f (r, z) =
( 𝜕f

𝜕r
, 𝜕f

𝜕z
) and dA = drdz.

2.3 Implementation in FEniCS

We use the FEniCS20,21 Python library (version
2019.1.0) to solve the linear variational problem in
Equation 19. FEniCS uses a domain specific lan-
guage, the Unified Form Language (UFL) to define
discretized variational problems. UFL allows the user
to define finite elements, function spaces, and abstract
variational expressions.

FEniCS includes a number of built-in finite element
families. For this work, we use linear 2D Lagrange ele-
ments in line with our use of the Galerkin method in the
previous section.Because we have a system of coupled
equations, we make use of the MixedElement class to
combine three elements, one for each of nRn, nPb, and
nBi . Given a finite element and a mesh, we then define a
FEniCS FunctionSpace on which to solve our variational
problem,as described in Equation 19.We define n and v
on the same FunctionSpace composed of mixed linear
Lagrange elements, following the space discretization
described in Section 2.2

The boundary conditions 4–6 create steep gradients
close to the source surface.These gradients lead to spu-
rious oscillations on the length scale of the element size
if the elements are not sufficiently small. We use FEn-
iCS’ built-in mesh refinement tool to refine the mesh in
iterative steps as a function the distance d from the inter-

nal boundary. Tables 1 and 2 list the element densities
for the midplane and axial domain geometries.

FEniCS allows the user to designate a TrialFunction
and a TestFunction, equivalent to n and v, which FEn-
iCS can then parse in the variational expression. The
abstract variational expressions in Equations 19 and 30
are written directly as an input to the linear solver.19 FEn-
iCS then separates the appropriate terms for a(np, v)
and L(v) in Equation 20.

At each time step,FEniCS solves the variational prob-
lem using the solution at the previous time step. The
FEniCS Form Compiler (FCC) assembles the N × N
finite element matrix A, where N is the number of ele-
ments, which is 440 052 for the mid-plane and 798 213
for the axial plane, respectively. We use the LU decom-
position method as implemented in FEniCS to solve the
linear system in Equation 24.

Once the number densities nRn, nPb, and nBi are
obtained, the dose can be updated by15

Dosep
𝛼(RnPo; x, y) = Dosep−1

𝛼 (RnPo; x, y)

+
E𝛼(RnPo)

𝜌
𝜆Rnnp

Rn(x, y)Δt (33)

Dosep
𝛼(BiPo; x, y) = Dosep−1

𝛼 (BiPo; x, y)

+
E𝛼(BiPo)

𝜌
𝜆Bin

p
Bi(x, y)Δt (34)

Additionally, we use the relative change in the total
alpha dose summed over the solution domain to imple-
ment adaptive time stepping. We set the minimum Δt to
be 0.1 s and the maximum Δt to be 3600 s.

We benchmark our approach against DART1D and
DART2D, numerical schemes for solving the D-L model
in one and two dimensions, respectively, using a finite
difference approach based on discretization of deriva-
tives. A complete description of DART1D and DART2D
is found in Heger et al.15 We compare results for the
number densities nRn, nPb, and nBi , as well as the
220Rn+216Po and 21Bi/212Po alpha dose components for
a treatment length of t = 30 days.

Our results are an independent validation of DART1D
and DART2D.

For the sake of comparison, we match the values
of our problem parameters to Heger et al.15 We use
desorption probabilities Pdes(Rn) = 0.45 and Peff

des(Rn) =
0.55. The 220Rn, 212Pb, and 212Bi diffusion lengths are
LRn = 0.3 mm, LPb = 0.6 mm, and LBi = 0.1LPb, within
the typical range seen in the literature.14 Finally, we
assume the 212Pb clearance rate 𝛼Pb is equal to its
decay rate 𝜆Pb, and set 𝛼Bi = 0 to zero as we consider
the clearance of 212Bi to be a secondary effect. Fur-
ther discussion of the variability of calculated doses
due to uncertainty in tissue parameters can be found
in Section 4
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A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE 7

F IGURE 2 Number densities computed by our FEM implementation. (a) Left: Result for 212Pb number density nPb plotted over 7 days using
FEM (solid blue line) and using DART1D (dashed red line). Right: Discrepancy between the FEM and DART1D implementations. (b) Result for
220Rn number density nRn using FEM (solid colored lines) and DART1D (dashed black lines). FEM, finite element method, DART, diffusing
alpha-emitters radiation therapy.

3 RESULTS

3.1 Comparison with DART1D: Number
density and alpha dose

Figure 2 shows a comparison between our results using
the radial geometry and the DART1D results for nPb
and nRn in the transient buildup stage before the num-
ber densities reach their respective asymptotic temporal
behavior. The 212Pb number density in panel (a) is plot-
ted at a distance r = 2 mm from the central axis of the
source. Our FEM results are systematically lower than
the DART1D results, with a maximum discrepancy of
5.3 × 107 (panel (b)), equivalent to a change of 2.4%.
Panel (c) shows the 220Rn number density normalized
by the asymptotic expression for nRn

15

nasy
Rn (r, t) = ARnK0

(
r

LRn

)
e−𝜆Rat (35)

where ARn is a constant depending on the Pdes(Rn),
LRn, the initial source activity and the source radius and
length.The horizontal axis is normalized by the effective
lifetime of 220Rn, 1∕(𝜆Rn − 𝜆Ra). We plot comparisons at
a range of distances starting at 2LRn up to 8LRn. Similar
to our results for nPb, our results for nRn underesti-
mate nRn, although for larger distances, the discrepancy
can be partly attributed to imperfect matching between
element node locations and the desired r value.

Figure 3 compares the alpha dose at the end of the
30 day treatment obtained by our method using the
radial geometry described in Section 2.2.1 with that
using DART1D. Panel (a) shows the 220Rn+216Po and
21Bi/212Po contributions to the alpha dose as a func-
tion of distance from the source axis. Like the DART1D
solution, our solution shows edge effects due to the
Dirichlet boundary conditions at the outer boundary of
the domain, although the effect is more severe in our
case. For distances less than 2 mm, our solution tends
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8 A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE

F IGURE 3 Comparison of the FEM and DART1D solutions for the 220Rn+216Po and 212Bi/212Po contributions to the alpha dose in the
source midplane. (a) Dose result using FEM (solid lines) and DART1D (dashed lines). (b) Absolute discrepancy between our and the DART1D
solutions for each component of the alpha dose. (c) Relative discrepancy between our solution and DART1D for each alpha dose component,
where the normalization is done with respect to the DART1D solution. (d) Relative discrepancy for the total dose, including both components.
FEM, finite element method, DART, diffusing alpha-emitters radiation therapy.

to overestimate the 220Rn+216Po dose compared to
DART1D with a maximum discrepancy of 1.2 Gy, rela-
tive to a dose of over 1 kGy (panel (b)). Similarly, the
discrepancy in the calculated 21Bi/212Po alpha doses
has its maximum of −0.3 Gy at the source surface,
where dose values are over 100 Gy. The minimal nec-
essary dose for effective tumor killing was found to be
10 Gy in preclinical studies of SCC tumors in mice.1

For both alpha dose contributions, a dose of 10 Gy is
reached in the 2–3 mm range, in which the discrepan-
cies are less than 0.15 Gy. Panel (c) shows the relative
discrepancy between our results and the DART1D result
(DoseFEM

𝛼 − DoseDART
𝛼 )∕DoseDART

𝛼 . For r < 1.5 mm, the
relative discrepancies for both alpha dose components
are on the order of 10−4. At distances greater than
1.5 mm, where the element size increases dramatically,
the relative discrepancy begins to increase, reaching a
maximum of 6% underestimation for the 220Rn+216Po
alpha dose and 0.6% underestimation for the 21Bi/212Po
alpha dose,before the onset of edge effects about 1 mm
from the outer boundary at 7 mm.We note that the dose
values at the distances at which the relative discrep-
ancies in 220Rn+216Po and 21Bi/212Po dose reach their

maximum are less than 1 𝜇Gy and 0.1 Gy, respectively.
Finally, in panel (d), we show the relative discrepancy
for the total dose including both components. At clini-
cally relevant distances of less than 3 mm, where there
is appreciable alpha dose, the relative discrepancy is
limited to less than 1%. Beyond 3 mm, the relative dis-
crepancy reaches a maximum of 3.3% at 7 mm, where
the solution is not reliable due to a large contribution
from edge effects.

3.2 Effect of varying diffusion lengths,
clearance rates, and probabilities of
desorption

We used the source midplane geometry to investigate
how the dose profile changes when different values
for the model parameters are used. Using the mid-
plane geometry shortens the necessary computation
compared to the axial geometry, and the resulting mid-
plane dose is accurate to within 2% at clinically relevant
distances of that obtained using the axial geometry
(Figure S1), which takes into account the finite length
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A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE 9

F IGURE 4 220Rn+216Po and 21Bi/212Po contributions to the alpha dose for different values of LRn and LPb. (a)220Rn+216Po alpha dose for
varying LRn. LPb is fixed at 0.6 mm. (b) Same as (a) for the 21Bi/212Po alpha dose. (c)220Rn+216Po alpha dose for varying LPb. LRn is fixed at
0.3 mm. (d) Same as (c) for the 21Bi/212Po alpha dose.

of the source. Figure 4 shows the radial alpha dose
profile for a range of values of LRn and LPb. Typical
ranges found in the literature for LRn and LPb are 0.2
to 0.4 mm and 0.2 to 2 mm, respectively.1,14,22,23 As
illustrated in panel (a), varying LRn from 0.2 to 0.4 mm
while fixing LPb at 0.6 mm results in an increase by
a factor of almost 30 in the 220Rn+216Po dose deliv-
ered at 2 mm, or half the recommended source spacing
for treatment.16 Over the same range of LRn values,
the distance over which the dose remains above 10 Gy
increases from 1.5 to 2.4 mm. A small effect with vary-
ing LRn is seen in the 21Bi/212Po alpha dose (panel (b));
the corresponding change in dose in this case is a fac-
tor of 1.27. The maximum distance to maintain 10 Gy
of 21Bi/212Po alpha dose ranges from 2.4 to 2.6 mm.
Combining both components, the total dose at 2 mm
is larger for LRn = 0.4 mm than for LRn = 0.2 mm by a
factor of 2.3. As expected, changing LPb has little to no
effect on the 220Rn+216Po alpha dose, as the associ-
ated decays occur before the production of 212Pb (panel
(c)); the change is less than 0.05%.In contrast, the effect
of increasing LPb from 0.2 to 2.0 mm with LRn fixed at
0.3 mm is to increase the calculated 21Bi/212Po alpha
dose at 2 mm by a factor of 8. The distance at which 10
Gy is reached increases from 1.8 mm for LPb = 0.2 to

3.6 mm for LPb = 2 mm. Combining both components,
the total dose at 2 mm is larger for LPb = 1 mm than
for LPb = 0.2 mm by a factor of 3.3. These results sup-
port previous observations that optimal placement of
sources is dependent on the diffusion properties of the
tumor tissue.15,16

Although the clearance rate 𝛼Pb is incorporated in
the diffusion length LPb, the effect of varying 𝛼Pb, while
keeping LPb fixed at 0.6 mm, was investigated. The
resulting dose in the seed midplane can be found in
the Supporting Information. The range of values for 𝛼Pb
estimated from mouse experiments is 0.5𝜆Pb to 2𝜆Pb.14

This range corresponds to a <0.002% change in the
220Rn+216Po alpha particle dose at 2 mm (Figure S2(a)).
For the 21Bi/212Po alpha dose, the dose resulting from
𝛼Pb = 0.5𝜆Pb is 1.95 times as large as the dose result-
ing from 𝛼Pb = 2𝜆Pb (Figure S2(b)). A dose of 10 Gy is
reached at 2.67 mm for 𝛼Pb = 0.5𝜆Pb and at 2.32 mm
for 𝛼Pb = 2𝜆Pb. The 212Bi clearance rate 𝛼Bi is assumed
to be zero in the D-L model.

The desorption probabilities Pdes(Rn) and Pdes(Pb)
were found to have a much smaller effect on the
alpha particle dose compared to the diffusion lengths.
The estimated range of values for Pdes(Rn) is 0.35
to 0.45.14 The change in dose at 2 mm across this
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10 A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE

range is 29% for the 220Rn+216Po component and 5%
for the 21Bi/212Po component (Figure S3(a)–(b)). The
change in minimum distance at which 10 Gy is deliv-
ered is < 0.1 mm for both components, smaller than
the achievable source placement accuracy in most clin-
ical scenarios.24 For Pdes(Pb), the estimated range of
values is 0.5 to 0.6.14 The corresponding change in
dose at 2 mm from the source axis is < 0.002% for
the 220Rn+216Po component and 16% for the 21Bi/212Po
component (Figure S3(c)–(d)). The 21Bi/212Po compo-
nent reaches 10 Gy at the same location to within
0.01 mm at both ends of the estimated range.

3.3 Solution convergence

We show the convergence and stability of the mid-
plane solution with element size. We use the dose at
the end of the 30 day treatment period as a measure
of solution convergence rather than the number den-
sities nRn, nPb, and nBi because the clinically relevant
quantity is the dose delivered.Furthermore, the accumu-
lated dose incorporates both the temporal development
(as it is an integral of the nRn and nBi) and the spa-
tial variation of n. The largest contribution to the total
element count is in the region closest to the source
surface, r ≤ 0.375 mm. This region is also most suscep-
tible to large errors due to insufficiently small element
size. We successively coarsen our mesh within each
circular subdomain described in Section 2.3 until the
element density inside matches that of the remainder
of the problem domain. Once the entire domain has the
same element density,we continue to decrease the num-
ber of elements until the number of mesh elements is
roughly 1% of the original 440 052, an arbitrary cutoff
to show the shape of the convergence plot. In Figure 5,
we show the calculated dose in the midplane geome-
try at r = 0.35 mm (at the source surface), 1, 2, and
3 mm as a function of the number of mesh elements.
The value obtained for the dose starts to flatten above
80 000 elements.At 440 052 elements,which is the num-
ber of elements used to obtain the results in this section,
the dose is well into the flat portion of the curve at all
four distances.

3.4 Comparison with DART2D: alpha
particle dose

The total alpha dose at the end of the 30 day treatment
calculated using the axial plane geometry described in
Section 2.2.2 is shown in Figure 6. The dose is largest
around the source wall (but not the source ends where
no diffusing isotopes are released), falling off rapidly
with increasing distance and reaching 10 Gy between 2
and 3 mm. For small radial distances, the dose changes
little along the z-direction until the source end is reached,

but farther away,the isodose lines begin curving towards
the source axis starting at around 2.5 mm from the
source top and bottom. Panel (b) shows the the differ-
ence between the dose calculated using our method
and the dose calculated using DART2D.Panel (c) shows
this difference normalized by the DART2D dose val-
ues. The radial dose profile is taken at z = 0 mm, and
axial dose profile is taken at r = 0.35 mm, the loca-
tion of the source wall. The x-axis in panels (c) and
(d) is distance from the boundary of the source, which
is the source wall for the radial profile and the source
top/bottom for the axial profile. Compared with DART2D,
our solution shows a trend toward higher doses in the
axial direction and lower doses in the radial direction at
distances within 1 mm of the source. One explanation
for the discrepancy between our solution and DART2D
could be the difference in element size in this region.
Aside from the domain boundaries, the location with the
largest discrepancy in the axial dose is at the source
ends, where the gradient is also the largest (Figure S4).
The spacing between mesh nodes in the z-direction
in DART2D is 0.05 mm, while the typical side length
of each triangular mesh element in our implementa-
tion is less than 0.015 mm in the regions closest to
the source. At distances greater than 3 mm, our dose
estimation falls off more rapidly than DART2D because
our domain is smaller, meaning that the onset bound-
ary effects occurs at smaller distances. The systematic
negative offset seen at closer distances could also be a
result of the smaller domain size. Below 3 mm, the dif-
ference between our dose calculation and DART2D’s is
less than 0.25% in the radial direction and less than 3%
in the axial direction.

4 DISCUSSION

DaRT has been of great clinical interest.4,5,25 Because
its dose deposition mechanism is radically different than
typical brachytherapy sources,1,14 it is crucial to develop
reliable methods of calculating the expected dose for
clinical use. Dose calculation has been investigated by
one research group14–16 without independent valida-
tion. Given this is the only model in existence, it has
been adopted in clinical trials even if lacking indepen-
dent validation from other groups.14,16 The D-L model is
a simplified diffusive model and assumes the source is
in an isotropic, time-independent medium, far away from
any boundaries. In reality, the diffusion parameters likely
vary in space with changing tissue health and degree
of vasculature.1 Additionally, many cancers for which
DaRT may be effective,5,25 such as cancers of the skin
or head and neck, will need an approach that is able to
model tissue-to-air boundaries. Finally, the success of
any DaRT dose model, D-L and otherwise, depends on
accurate determination of the diffusive properties of the
source environment.
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A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE 11

F IGURE 5 Convergence of source midplane solution with element size. Accumulated dose after 30 days at r = 0.35, 1, 2, and 3 mm, as a
function of the number of elements in the mesh.

In our work, we reformulate the D-L equations into
finite element variational statements and calculate the
dose profiles in two slices perpendicular and parallel to
the source axis. The two previously existing approaches
for solving the D-L equations make use of finite differ-
ence schemes.15 Our approach differs from these in
two key respects. The first is in the method by which
the system of partial differential equations is converted
into a system of linear equations. In finite difference
schemes, the spatial gradients and time derivatives are
approximated by differences between neighboring mesh
elements. The solution of the linear system is a vec-
tor of the approximated number density values at each
element. In our approach, the spatial derivatives are
not discretized. Instead, the system of differential equa-
tions is reformulated into a variational statement that
is solved exactly. The solution is a basis expansion
over a set of functions that are continuous over the
entire domain. The second key difference is in the for-
mation of the mesh. The DART1D mesh is made up
of line segments of a fixed size; similarly, its exten-
sion DART2D uses rectangular elements of fixed size.15

The discretization of spatial gradients required by finite
difference approaches makes the implementation of
non-rectangular meshes with varying element size and
orientation extremely difficult. FEM makes possible the
use of an unstructured mesh, allowing us to locally
increase the element density, as well as more tightly
conform element edges to irregularly shaped domains.

Compared to the previous method, our approach
tends to predict higher doses in the source midplane
close to the source wall and lower doses along the
source axis close to the source ends. The trend in the
midplane is consistent with a dose calculation by the
authors of DART2D using COMSOL,which showed that
DART2D underestimates the dose close to the source
by around 1.4%.15 To our knowledge, no analogous
COMSOL validation has been published for the axial
dose profile.Because of the local mesh refinement used
in FEM, the large gradients in these areas can approx-
imated with a higher point density. A denser mesh is
generally more accurate in approximating solutions with
large gradients.18 The doses close to the source are well
above the 10 Gy necessary for effective cell killing, so
the clinical impact of these differences may be small.
Beyond 0.5, the FEM calculation method produces dose
profiles within 1% of DART1D and DART2D at clinically
relevant distances from the source. The most salient
advantage of using FEM over previous approaches
is the intrinsic ability to scale for inhomogenous and
time-dependent geometries. The diffusion properties of
tumor tissue vary on a macroscopic scale with implica-
tions relevant for treatment planning. For example, the
212Pb leakage probability is higher near the tumor edge
where there is more vasculature that it is in the interior.
As a result, calculations using fixed meshes must set
the diffusion lengths and clearance rates at conserva-
tive values so that a minimum dose is guaranteed in the
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12 A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE

F IGURE 6 Total alpha particle dose obtained for the axial geometry with FEM and compared to DART2D. (a) Total dose in the plane
intersecting the central axis of the source. (b) Discrepancy between the FEM-calculated dose and the dose calculated using DART2D as a
function of distance from the source along the radial (z = 0mm) and axial (r = 0.35mm) directions. (c) Relative discrepancy between the FEM
and DART2D doses along the radial and axial directions. FEM, finite element method, DART, diffusing alpha-emitters radiation therapy.

outer regions, although the dose in other regions will be
higher than predicted.16

We emphasize that the results presented here serve
only as a solution to the D-L model up to the choice of
physical parameters. In Section 3.2,we discuss changes
in the alpha dose profiles in the source midplane for dif-
ferent values of the diffusion lengths,clearance rate,and
desorption probabilities. Ranges for these parameters
taken from literature are large,1,14,22,23 and the experi-
mental determination of diffusion lengths and clearance
rates, though outside the scope of this work, remains an

important task for estimating the dose delivered in realis-
tic treatment scenarios.14 Previous work investigated the
effect of diffusion parameter values and uncertainties
on the necessary source activity and spacing required
to achieve 10 Gy at the location of minimum dose in a
lattice of sources.16 These results and the current work
both suggest that the dominant contributors to the dose
profile are the 220Rn and 212Pb diffusion lengths, with
the 212Pb leakage probability as a secondary effect.

An important drawback to the current implementa-
tion is the computational resources it requires. For the
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A FINITE ELEMENT METHOD FOR MODELING DIFFUSION OF ALPHA-EMITTING PARTICLES IN TISSUE 13

mesh and parameters described in Section 2.3, one
run of our code finishes in five hours. The majority of
this time is spent solving the 440 000-by-440 000 lin-
ear system in Equation 24. In this work, we have used
sparse LU decomposition, which is optimal for smaller
systems, but becomes time-consuming and memory-
intensive for systems with more than a few thousand
elements. Using an iterative solver with precondition-
ing is one avenue for improving the efficiency of our
code.17 In the current implementation, the radii defining
successive refinement zones and number of refinement
steps is hardcoded in the program. The addition of
adaptive mesh refinement, in which the local mesh den-
sity is automatically refined in each time step based
on a local error estimate,17 would greatly streamline
the meshing process for different tissue parameters
and geometries. In addition to computational consid-
erations, moving beyond the assumptions of the D-L
model is important for modeling realistic dose depo-
sition. Accurate calculations of the dose will need to
take into account diffusion properties that change in
space and time as treatment progresses. Additionally,
the tumor can shrink and the sources may come closer
together as necrotic tissue is cleared away,5 necessitat-
ing time-dependent domain boundaries. Finally, future
work will be performed to incorporate healthy and
necrotic subdomains with appropriate physical param-
eters and boundary conditions to handle cases with
tissue-to-air boundaries.

5 CONCLUSIONS

We implemented a FEniCS-based FEM program to
solve the D-L model on a two-dimensional domain in
the source midplane and axial plane. At clinically rele-
vant distances, the calculated total dose in the source
midplane after 30 days of treatment agrees with that
obtained using DART1D and DART2D to within 1%; ini-
tial calculations of the dose profile in the axial plane of
the source show a difference of 3% along the source
axis compared to DART2D. The largest differences
occur in areas where the dose changes rapidly with
distance. In these regions, the local mesh refinement
made possible by an unstructured FEM mesh is poten-
tially better able to approximate high gradients. In the
source midplane at the midpoint of the recommended
seed spacing of 2 mm, the dose may vary by over a
factor of 3 depending on the choice of parameter val-
ues. Therefore, more experimental data on the diffusion
properties of various tumor tissues is needed to refine
the range of likely values in realistic treatment scenar-
ios.The approach outlined in this paper will be extended
to account for more complicated non-symmetric geome-
tries in two dimensions, including tissue-to-air interfaces,
as well as spatial inhomogeneity and time dependence
in tissue parameters.
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15. Heger G,Roy A,Dumančić M,Arazi L.Alpha dose modeling in dif-
fusing alpha-emitters radiation therapy. Part I: single-seed calcu-
lations in one and two dimensions.Med Phys.2023;50:1793-1811.
https://doi.org/10.1002/mp.16145
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