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Diffusing alpha-emitting radiation therapy (DaRT) employs intratumoral Ra-224-coated

seeds that efficiently destroy solid tumors by slowly releasing alpha-emitting atoms

inside the tumor. In immunogenic tumor models, DaRT was shown to activate

systemic antitumor immunity. Agonists of the membrane-bound toll-like receptors (TLRs)

enhanced these effects and led to tumor rejection. Here, we examined the combination

of DaRT with agents that activate a different type of pattern recognition receptors, the

cytoplasmatic RIG1-like receptors (RLRs). In response to cytoplasmatic viral dsRNA,

RLRs activate an antiviral immune response that includes the elevation of antigen

presentation. Thus, it was postulated that in low-immunogenic tumor models, RLR

activation in tumor cells prior to the induction of their death by DaRT will be superior

compared to TLR activation. Intratumoral cytoplasmatic delivery of the dsRNA mimic

polyIC by polyethylenimine (PEI), was used to activate RLR, while polyIC without

PEI was used to activate TLR. PolyIC(PEI) prior to DaRT synergistically retarded 4T1

triple-negative breast tumors and metastasis development more efficiently than polyIC

and rejected panc02 pancreatic tumors in some of the treated mice. Splenocytes

from treated mice, adoptively transferred to naive mice in combination with 4T1

tumor cells, delayed tumor development compared to naïve splenocytes. Low-dose

cyclophosphamide, known to reduce T regulatory cell number, enhanced the effect

of DaRT and polyIC(PEI) and led to high long-term survival rates under neoadjuvant

settings, which confirmed metastasis clearance. The epigenetic drug decitabine, known

to activate RLR in low doses, was given intraperitoneally prior to DaRT and caused tumor

growth retardation, similar to local polyIC(PEI). The systemic and/or local administration

of RLR activators was also tested in the squamous cell carcinoma (SCC) tumor model
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FIGURE 6 | Effect of DaRT combined with decitabine and/or polyICPEI on 4T1

tumor development. Mice bearing 4T1 tumors (40 mm3 ) were treated with a

DaRT seed (75 kBq) in combination with decitabine (1 mg/kg i.p. for 4

consecutive days prior to DaRT) and/or polyICPEI (30 µg/60 µl, 72 h prior to

DaRT and 50 µg/100 µl polyICPEI, 24 h prior DaRT). (A) Schematic

representation of the treatment by decitabine. (B) Presented are the tumor

volumes ± SEM.

inert+polyICPEI+CP (plog−rank test <0.05), but not compared to
DaRT alone (plog−rank test =0.081).

Systemic Low-Dose Decitabine Combined
With DaRT Retarded the Growth of 4T1
Tumors
It was then investigated whether systemic low-dose
administration of the epigenetic drug decitabine (37), which is
known to activate RLR, will strengthen tumor growth retardation
induced by DaRT, similar to locally administered polyICPEI. This
question is of special therapeutic importance, because decitabine
can be administrated systematically to patients.

Mice bearing 4T1 tumors (40 mm3) were treated with
polyICPEI (30 µg/60 µl 72 h prior to DaRT and 50 µg/100 µl
24 h prior to DaRT) and/or decitabine (1 mg/kg i.p. daily for 4
consecutive days) prior to the insertion of a DaRT seed (activity
= 75 kBq) (Figure 6A).

DaRT combined with decitabine significantly reduced tumor
size by 64% compared to DaRT alone, similar to the 50%
reduction achieved by DaRT+polyICPEI (Figure 6B). DaRT
combined with both decitabine and polyICPEI achieved the
strongest effect (75% reduction compared with DaRT alone,
pt−test = 0.001), yet it was only marginally better than DaRT
with each stimulator alone. In addition, it was demonstrated

that DaRT+decitabine+polyICPEI was significantly stronger
(2.5-fold) compared to the same treatment with a non-
radioactive seed (Figure 6B). These results were confirmed in
an additional experiment in which mice were bearing larger
tumors (85 mm3 at the day of treatment start). Tumor volume
determined at the same timepoint for inert or DaRT, combined
with polyICPEI and decitabine, was 194 ± 25 vs. 115 ± 16 mm3,
respectively, pt−test< 0.05).

DaRT Combined With Systemic Low-Dose
Decitabine or Intratumoral polyICPEI

Inhibited the Growth of SQ2 Solid Tumors
and Induced Antitumor Immune Response
Against Tumor Cell Re-challenge
To further test the robustness of these treatment regimens,
including their ability to induce an antitumor systemic immune
memory, a tumor model of squamous cell carcinoma (SCC),
SQ2, was investigated. SCC was the first type of tumor for which
DaRT was tested in human patients (50). SQ2-bearing mice were
treated with DaRT (85 kBq) combined with polyICPEI (25 µg /50
µl), decitabine, or both. Residual tumors were resected 24 days
after DaRT, and mice were subjected to tumor re-challenge of
the same number of cells (5 × 105 tumor cells), 22 days after
tumor resection.

DaRT combined with polyICPEI, decitabine, or both
significantly retarded tumor development compared to
DaRT alone. DaRT+decitabine significantly retarded tumor
development similar to DaRT+polyICPEI, leading to a ∼65%
reduction in tumor size compared to DaRT+vehicle treatment,
for up to 27 days from treatment initiation. In this tumor
model, the combination of DaRT+polyICPEI+decitabine
provided the best results with 92% reduction (20-fold change)
compared to DaRT alone and was significantly superior to
both DaRT+decitabine or DaRT+polyICPEI (Figure 7A). DaRT
combined with polyICPEI, decitabine, or both preserved the
ability to induce long-term immunememory, as demonstrated by
a significant reduction (∼80%) in tumor size after re-challenge,
compared to naïve mice inoculated with the same number of
tumor cells (Figure 7B).

DISCUSSION

In the present study, we examined the possible synergy
between the activation of cytoplasmatic dsRNA sensors and
tumor ablation by intratumoral diffusion of alpha emitting
atoms, both at the local and systemic levels. Treatment with
DaRT in combination with cytoplasmatic delivery of polyIC
synergistically retarded the development of mouse TNBC
tumors and demonstrated rejection of mouse pancreatic tumors.
Although the treatment was administrated locally, it also reduced
themetastatic load in the lungs and induced a long-term systemic
antitumor immune response. Low-dose CP, which was previously
shown to reduce the number of Tregs (49), enhanced the tumor
control achieved by the local treatment and led to high long-term
survival rates that confirmed the reduction in metastatic load.

DaRT-related antitumor immunity (16) was previously
attributed to the in situ dispersion of tumor antigens, processed
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FIGURE 7 | Tumor control and long-term immune memory following treatment with DaRT, decitabine, polyICPEI, or both, in SQ2 tumor model. (A) SQ2-bearing mice

(30 mm3 on first decitabine dose day) were treated with decitabine (1 mg/kg i.p. daily for 4 consecutive days prior to the DaRT) and/or an intratumoral injection of

polyICPEI (25 µg/50 µl 72 and 24 h prior to DaRT). A DaRT (activity=85 kBq) seed was inserted into the tumor 24 h later. Presented are the tumor volumes ± SEM.

Pt−test < 0.05 for all treatments vs. DaRT and for DaRT+decitabine+polyICPEI vs. DaRT+decitabine. (B) Residual tumors were resected 24 days after DaRT and mice

were subjected to tumor re-challenge of 5×105 tumor cells 21 days after tumor resection. Presented are the tumor volumes ± SEM of the re-challenged tumors.

Significant difference was observed for all groups vs. naïve mice (Pt−test < 0.05, on day 17). *On day 17 one mouse from the DaRT+decitabine+polyICPEI group died

from unknown reason and was not included in the mean tumor volume calculation from this time point on.

by APCs (4). Addition of TLR agonists (16–18) that activate
APCs enhanced DaRT’s effect. In the current study, combining
DaRT with polyIC, complexed with the delivery reagent PEI
(PolyICPEI), led to more robust solid tumor control and greater
clearance of metastases relative to the same treatment with
polyIC only (a TLR3 agonist by itself). This finding suggests that
polyICPEI may exhibit a dual effect, both augmenting antigen
presentation by tumor cells (via RLR) and antigen presentation
by dendritic cells (via TLR).

The use of DaRT after polyICPEI may consequently lead
to the release of DAPMs after DNA damage, pathogen-
associatedmolecular patterns (PAMPs) from radiation killed cells
containing dsRNA, and a massive amount of tumor antigens
in the context of MHC class I. This may support important
processes such as cross-presentation and cross-dressing (51). In
addition, the potential elevation of MHC class I on tumor cells
by PolyICPEI (34) prior to cell death by DaRT may increase the
probability to present yet non-presented tumor antigens in the
context of MHC class I. Thus, it can be speculated that PolyICPEI-
treated, and alpha-radiation-killed, tumor cells may release such
MHC class I-antigen complexes, which can be picked up by DCs
that in turn present them to CD8+ T cells and help to expand the
number of clones recognizing tumor antigens.

In this study, it was shown that DaRT combined with different
types of agents known to activate RLR achieved robust antitumor
effects in three tumor models. Low-dose decitabine resulted
in tumor retardation, similar to polyICPEI. In the SCC tumor
model, adding decitabine, polyICPEI, or both reduces tumor
size compared to DaRT, yet in the challenge assay, the addition
of RLR activation did not affect the power of the long-term
immune response relative to DaRT alone (Figure 7B). This may
be due to the relatively high number of tumor cells used in

the assay. Another possibility is that cells inoculated in the
challenge assay were not subjected to a treatment that elevates
antigen presentation before inoculation. Namely, antigens that
were potentially unmasked by RLR activation in situ were not
presented by the tumor cells inoculated in the challenge assay,
since they were not exposed to the RLR activator and no elevation
of MHC class I was induced. Further study is needed to clarify
these mechanisms.

The synergy between DaRT and RLR activation can
be attributed to additional non-immune-related potential
mechanisms. For example, the cellular response to a viral
attack may promote transcription related to programmed cell
death (52), and thus when DNA damage is induced by alpha
radiation, the cellular stress response is already biased to favor
cellular death over DNA repair. Indeed, RLR activation by
cytoplasmatic delivery of polyIC was found to sensitize tumor
cells to ionizing radiation also in vitro (53). In the case of
decitabine, sensitization to alpha radiation may also be due to
chromatin de-condensation (54).

In its first-in-human clinical trial, DaRT was used to treat
SCC patients. All patients responded to DaRT, with almost
80% showing complete responses with minor adverse effects
(50). In one case, evidence suggests the possible induction
of an abscopal effect (55). The treatment regimens presented
here efficiently affected both the tumor and distant metastases
and extended long-term survival. Low-dose cyclophosphamide,
previously found to reduce the number of Tregs, demonstrated
the potential of immunomodulating therapies used in clinical
practice (56) to further enhance these effects. Taken together,
the results presented here may suggest future directions for
improved therapeutic protocols for treating patients with
metastatic cancer.
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